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Abstract. In a magnetic field, spin-ladders undergo two zero-temperature phase transitions at the critical
fields Hc1 and Hc2. An experimental review of static and dynamical properties of spin-ladders close to
these critical points is presented. The scaling functions, universal to all quantum critical points in one-
dimension, are extracted from (a) the thermodynamic quantities (magnetization) and (b) the dynamical
functions (NMR relaxation). A simple mapping of strongly coupled spin ladders in a magnetic field on the
exactly solvable XXZ model enables to make detailed fits and gives an overall understanding of a broad
class of quantum magnets in their gapless phase (between Hc1 and Hc2). In this phase, the low temperature
divergence of the NMR relaxation demonstrates its Luttinger liquid nature as well as the novel quantum
critical regime at higher temperature. The general behavior close these quantum critical points can be tied
to known models of quantum magnetism.

PACS. 75.10.Jm Quantized spin models – 75.40.-s Critical-points effects, specific heats, short range order
– 76.60.-k Nuclear magnetic resonance and relaxation

1 Introduction

It is well known that long-range order is destroyed by
quantum fluctuations in one-dimensional antiferromag-
nets. If the importance of quantum effects is ubiquitous in
one-dimension, a wide variety of ground states can never-
theless be found in nature. Some systems have a contin-
uum of low energy modes, some have an energy gap above
a unique ground state, other dimerize. Where do these dif-
ferences come from? In simple terms, the role of quantum
effects is simply to “connect” different classical ground
states (for example the Néel states | ↑, ↓, ↑, ↓, . . .〉 and
| ↓, ↑, ↓, ↑, . . .〉) by tunneling processes. Depending of the
strength of the tunneling matrix elements, which can usu-
ally be measured by a coupling constant g, the system will
be more or less localized around a classical ground states.
As g is varied, the system can delocalize at a critical value
gc. When the system delocalizes in spin space, the ground
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state becomes a rotationally invariant singlet and in all
the cases which will be considered here, an energy gap
∆ appears simultaneously in the energy spectrum. Many
physical aspects determine the strength of quantum fluc-
tuations. The integer or half-integer nature of the spin con-
sidered modify drastically selections rules for quantum-
processes [1]. This is why integer-spin chains for which
g exceed gc have an energy gap, while half-integer spin-
chains remain gapless (g ≤ gc). Other physical parameters
(exchange constants, applied magnetic fields) also enter in
the precise determination of the coupling strength g. Sys-
tems for which the coupling constant can be continuously
varied by an experimentally controllable parameter, such
as a magnetic field, are rare. In this paper we review a few
1D antiferromagnets where such zero temperature critical
points have been observed, with a particular emphasis on
Cu2(C5H12N2)2Cl4 (also known as CuHpCl) [2–4], a spin-
ladder compound, where a complete set of experiments
exist.

At a quantum critical point [5–9], the system switches
from one ground state into another. Specifically when
g ≤ gc, antiferromagnetic correlation functions decay as
power laws and the system is nearly ordered. When g
is increased above gc, a gap opens up and the range of
antiferromagnetic correlation become finite, of the order
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Fig. 1. Phase diagram of spin-ladders in a magnetic field. The
magnetic field (vertical axis), can be thought as a tuning pa-
rameter for the quantum coupling constant g. Below Hc1 ⇔ gc,
the coupling constant g exceeds gc (H ≤ Hc1 ⇔ g ≥ gc). This
phase has a singlet ground state and an energy gap. Above
Hc1, the coupling constant g drops below gc: the phase is mag-
netic and gapless and belongs to the same universality class
as the Heisenberg XXZ model. The dotted lines represent the
crossover lines where ξg ' ξT separating two quantum regimes
just described (where ξg is the relevant quantum correlation
length) from the quantum critical regime dominated by ξT .
For the system discussed in this paper the quantum critical
behavior at the upper critical field Hc2 is similar and will
be discussed in the next sections. The shaded area between
critical fields is a 3D ordered phase stabilized by transverse
interactions (see Sect. 5).

of ξg ' a/|g−gc| (a is the lattice constant). In the vicinity
of gc, one has to go to relatively long lengthscale, exceed-
ing ξg to be able to tell in which phase the system is.
In other words, the nature of the ground state is mani-
fest only at long lengthscale. At finite temperature spin-
flip processes become possible. They cut spin-correlations
off at a lengthscale ξT which can be estimated in the
quantum-disordered phase (g ≥ gc) as the mean distance
between excitations. Since their energies are higher than
the energy gap ∆ ' 1/|g − gc| above the ground state,
their density is activated. Hence when kBT < ∆, the
mean distance between excitations ξT greatly exceed ξg
and thermal fluctuations are not really relevant. On the
other hand, when kBT ≥ ∆, their density is governed by
the relative value of kBT −∆ compared to the bandwidth
of the triplet excitations. When ∆ is small compared to
kBT and this bandwidth, ξg exceeds very rapidly ξT . In
this case, the density of excitations are determined by kBT
alone which become the only relevant energy scale. In this
limit, dynamical properties are similar to those of a simple
paramagnet (1/T1 → cst) while thermodynamics quanti-
ties remain nontrivial. This regime is (improperly) named
the quantum critical regime, because most properties are
determined by the single lengthscale ξT as in ordinary
phase transitions.

To summarize, there are two-relevant lengthscales at
a quantum critical point, the quantum correlation length

ξg and the thermal length ξT . Depending on their rela-
tive values, different regimes exists. They are represented
graphically in Figure 1, on the H-T phase diagram appro-
priate to spin-ladders. The regions dominated by quan-
tum effects are (a) the gapped spin-liquid phase below
line A, (b) the XXZ or Luttinger liquid phase to the left
of line C and (c) the gapped polarized phase above line B.
The quantum critical region is found to the right of these
crossover line and extends down to T = 0 at the critical
fields Hc1 and Hc2. Each regime will clearly be identified
using thermodynamic and 1/T1 NMR relaxation measure-
ments which allow to place precisely the crossover lines on
this phase diagram.

The differents sections are organized as follows: a brief
description of several families of gapped antiferromagnets
having an H-T phase diagram similar to the one shown
in Figure 1 can be found in Section 2. A description of
the structure and the interactions relevant to CuHpCl,
the 1D ladder system chosen for our case study, is given
in Section 3. A mapping of strongly coupled ladder in a
magnetic field onto the XXZ Heisenberg model is intro-
duced in Section 4. It is used throughout the rest of the
paper to fit and interpret experimental data. In Section 5,
the different phases shown in Figure 1 are identified using
high-field magnetization data. The XXZ model is used to
fit the low temperature data and to give a physical model
for the ordered phase observed between Hc1 and Hc2. Sec-
tion 6 is devoted to the dynamical processes entering in
the NMR relaxation. The different regimes decribed in
Figure 1 are presented in Section 7 through T−1

1 mea-
surements across the entire phase diagram. The Luttinger
liquid behavior between Hc1 and Hc2 is clearly seen for
the first time and compared to the XXZ models. Finally
the first scaling analysis for a 1D quantum critical point is
presented in Section 8 and the paper concludes with some
new perspectives.

2 Gapped 1D antiferromagnets: a broad
universality class

There are three known families of quasi 1D materials be-
longing to the same universality class, with an H-T phase
diagram similar to Figure 1. They can all be described
by the same quantum-field theory, the O(3) non-linear
σ-model [1,11,12] in a magnetic field. Their excitation
spectrum [13] in a weak magnetic field is represented in
Figure 2. The lower critical field Hc1, is reached when the
lowest energy gap ∆− vanishes. The upper critical field
Hc2 is usually reached when the highest energy state of
the ε−(q) branch is below the singlet energy. An approxi-
mate representation of their singlet ground-states are rep-
resented in Figure 3.

The know families of 1D antiferromagnets in this uni-
versality class are:

(i) Quasi 1D-antiferromagnetic compounds with two al-
ternating exchange constants J1 and J2 have been
known for over two decades to have a gap (Fig. 3a).
For spin-1/2 alternating chains, the spectrum
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Fig. 2. The lowest lying excitations form a triplet branch,
split by the Zeeman field, or other anisotropic forces. They
are separated from a unique singlet ground state by energy
gaps ∆+, ∆0,∆−. In absence of anisotropies, they are split by
the Zeeman energy, ∆± = ∆0 ± gµBH. The shape of the dis-
persion relation across the Brillouin zone depends on the ex-
change interactions specific to each 1D system. In particular,
the energy gap may be at qa = π (S=1 chains, ladders) or at
q = 0 (dimerized chains with sufficiently large antiferromag-
netic second-neighbor exchange). Similarly, a two-“magnons”
continuum may intersect the triplet branch and have a lower
energy in some region of the Brillouin zone. In this universality
class, there are no singlet states in the gap.

is identical to Figure 2 and in the strong coupling
limit (J1 � J2), the energy gap is ∆ ≈ J1 −
J2

2 −
3
8
J2

2

J1
. Very nice thermodynamic studies [15] of

Cu(NO3)2.2.5H2O have identified the existence of
two critical fields Hc1 ≈ J1 − J2/2 ' 2.8 T and
Hc2 ≡ 2J1 ' 4.5 T. In spite of the modest value
of Hc1 and Hc2, dynamical properties close to these
critical points have never been thoroughly mapped
out neither by NMR relaxation measurements nor
by neutron scattering. Considering the interest in
quantum phase-transition, this interesting compound
should be revisited.

(ii) Spin-1 Heisenberg antiferromagnetic chains [1] with a
sufficiently weak planar anisotropy have in zero mag-
netic field a triplet excitation branch separated by
an energy gap ∆ ≈ 0.41 × J from the unique sin-
glet ground state. The most thoroughly studied com-
pound in this family is NENP [16]. Because of the
presence of a planar anisotropy, this system has three
different lower critical fields (9.8, 13.3 and 14 T) [17,
18] depending on the orientation of the field with re-
spect to the anisotropy axes. The upper critical field
which has not been measured should exceed 86 Tesla.
Thermodynamic and dynamical measurements [19]
have been carried out at the lower critical field and
provide very valuable insight on zero-temperature
phase transitions.

(iii) Spin-ladders are quasi-1D structures where a finite
number of antiferromagnetic chains are coupled by a
transverse antiferromagnetic exchange. Ladders with
an odd-number of coupled chains are gapless and be-
long to the same universality class as the spin-1/2

(a)

(b)

Fig. 3. Three families of gapped antiferromagnets. (a) Dimer-
ized chains: the antiferromagnetic bond J1 dominates J2. Sin-
glet valence bonds are preferentially localized on these bonds.
Middle, integer spin chains. The ground state can also be
viewed as a product of valence bonds [14], by decomposing
each spin 1 in two spin-1/2 and forming valence bonds with the
pair of spin-1/2 at the extremity of each bonds (valence bond
solid). (b) Spin ladders. In the strong coupling limit (J⊥ � J‖),
singlet bonds are localized on the rungs of the ladder.

Heisenberg chain [20]. On the other hand, spin-1/2
ladders with an even number of legs are gapped and
form a singlet ground-state with short ranged spin
correlations (spin-liquid). While several compounds
with ladder-like magnetic structure exist [21,22], the
only system where the quantum critical point Hc1 is
experimentally accessible is CuHpCl, a coordination
compound made up by stacking binuclear molecules
in a ladder structure [23]. Thermodynamic [2,30]
and dynamic quantities [3,4] have been measured
over the entire phase diagram and give a relatively
complete experimental picture of a zero-temperature
phase transition.

We now describe its structure, and the relevant mag-
netic interactions in this material.

3 CuHpCl, a 1D spin ladder in the strong
coupling limit

The molecular unit is a binuclear structure with two Cu2+

ions (spin 1/2) each lying in a middle of two parallel
distorted square-structures [23]. At the vertices of each
square, one finds two chlorine and two nitrogen ions as
depicted in the top of Figure 4. There are two super-
exchange paths through the chlorine ions Cl1 and Cl2
bridging the copper ions. However, the pz orbitals of the
chlorine ions are nearly orthogonal to the Cu2+ dxy or-
bital. The resulting exchange constant between the copper
ions J⊥ ≈ 13.5 K, is found to be weaker than in other ma-
terials with similar Cu−Cu distance. The organic rings,
on the outside of the ionic-core just described, contribute
further to the delocalization of the unpaired Cu2+ or-
bital. Each molecular unit stacks up in the [101] direction
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(a)

(b)

Fig. 4. (a) Representation of the parallel plane geometry of
the Cu2+ orbitals. (b) Stacking of the molecular units in a
ladder structure along the [101] axis.

of this P21/c molecular crystal (see Fig. 4). In addi-
tion to the van-der-Vaals forces, the organic rings allow
a weak hydrogen bonding between molecules, along which
a super-exchange path can propagate. In spite of the
relatively large intermolecular Cu−Cu distance, the or-
bital overlaps are favorable and lead to an intermolecular-
exchange interaction J‖ ≈ 2.45 K along the ladder.
Strictly speaking, due to the low symmetry, there are small
differences in Cu−Cu distances along the ladder above
and below each molecular unit. Because the bridging en-
tities have the same symmetries, these small differences
are not expected to modulate significantly the exchange
(J‖) along the legs. The translational invariance is nev-
ertheless naturally broken, making any additional lattice
(spin-Peierls) instabilities less favorable. Comparison of
thermodynamic properties to numerical simulations [24]
have demonstrated that the other possible magnetic cross-
bondings between the legs are weak and need not be con-
sidered. On the other hand, it is now clear that there is also
a weak inter-ladder super-exchange, probably also medi-
ated by a weak hydrogen bonding between organic rings.
If it is not relevant in the gapped phases, it induces at
low-T a 3D-ordered phase in the gapless region between
Hc1 and Hc2 [30]. While this phase has been observed in

specific heat measurements, its actual structure has not
been determined experimentally.

4 Hamiltonian representations
of strongly-coupled spin-ladders

For most purposes, it will be sufficient to consider a quasi-
1D ladder Hamiltonian in a magnetic field H = H1 +H2

+HZ , where

H1 = J⊥

N∑
i=1

S2i−1 · S2i (1)

H2 = J‖

2N∑
i=1

Si · Si+2, (2)

(even spins are on one leg and odd spins are on the other).
The weak g-factor anisotropy (g⊥ ≈ 2.03, g‖ ≈ 2.11) ob-
served in EPR measurements [2] may be retained in the

Zeeman Hamiltonian, HZ =
∑2N
i=1,α gαµBS

α
i Hα. In the

strong coupling limit (J⊥ � J‖), it is possible to give a
straightforward description of the low-energy states in a
magnetic field, treating H2 as a perturbation [25,26]. The
eigenstates of H1 + HZ which describes isolated dimers
in a magnetic field, are built from the singlet

r

r

(valence
bonding) and triplets

r

r

+1,
r

r

0,
r

r

−1 (antibonding) on each
rung. Since we are interested in the critical region, where
the Zeeman energy is of the order of J⊥, it is legitimate
to project H2 on the restricted Hilbert space generated by
the lowest dimers states,

r

r

and
r

r

−1. The matrix elements
of H2 between neighboring dimers can be represented on
this subspace by a 2 × 2 matrix, which is expressed in
second-quantized notation as

Heff
2 =

J‖

2

N∑
r=1

(
t†rtr+1 + trt

†
r+1 + nrnr+1

)
. (3)

The fermionic operator t† creates the triplet state
r

r

−1 on
bond r ≡ [2i, 2i+1] (only one triplet per bond is allowed),
while t destroys a triplet, leaving a singlet on bond r. The
operator nr ≡ t†rtr counts the triplet occupation of bond
r. In the fermion language, the first two terms represent
the kinetic energy while the last term is a short range
repulsion between fermions. Since S2 and Sz are good
quantum numbers (S is the total spin), it is convenient
to divide the Hilbert space into sectors with a given value
of Sz. In the restricted Hilbert space, each sector specifies
the total fermionic occupation since

Sz =
∑
r

nr. (4)

The singlet sector is not coupled by Heff
2 and the singlet

eigenstate remains the dimer product |S = 0〉 = |
r

r

r

r

. . .〉
with energy E0 = − 3

4NJ⊥. This ground state energy
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may be compared to a serie expansion1 in J‖/J⊥ [27].
For the parameters appropriate to CuHpCl, the corre-
sponding singlet energy is only 1.6% lower than in the
previous estimate. The reduction of H2 to equation 3 is
therefore appropriate to CuHpCl, at least for qualitative
answers.

In the S = 1 (1-fermion) sector, the Hamiltonian Heff
2

can also be diagonalized in Fourier space, since the inter-
action term nrnr+1 does not contribute. The dispersion
relation of this triplet state is,

ESz=−1(q) = J⊥ − gzµBH + J‖ cos(qa), (7)

|1, q〉 =
∑
r

exp(iqr)|
r

r

. . .
r

r

r−1 r

r

r r

r

r+1 . . .〉. (8)

For fields below gzµBHc1 ≈ ∆0 = J⊥ − J‖, there is an
energy gap ∆− = ∆0 − gzµBH between the singlet and
the q = π/a minimum of the triplet branch, as shown in
Figure 2. For fields above Hc1 or temperatures above the
gap ∆−/kB, it is necessary to explore the energy spectrum
of H2 at finite fermion density. In the low-energy sector of
the Hilbert space (

r

r

,
r

r

−1), a finite fermion density raises
the energy of H1 +Hz with respect to the ground state by
an amount proportional to the triplet (fermion) density

δE = (J⊥ − gzµBH)
∑

nr. (9)

In other words, µ ≡ J⊥ − gzµBH acts as the chemical
potential for the triplets.

The low energy spectrum of Heff
2 can be described ex-

actly on the restricted Hilbert space: equation (3) can be
recognized as the fermion representation of the S = 1

2
XXZ Heisenberg model

Heff = J‖
∑
i

(
SxrS

x
r+1 + SyrS

y
r+1 +

1

2
SzrS

z
r+1

)
+ Heff

∑
r

Szr +N
J⊥

8
, (10)

in an effective field

Heff = J⊥ +
J‖

2
− gzµBH. (11)

Heff is zero at the midpoint between Hc1 = J⊥ − J‖ and
the upper critical field Hc2 ≡ J⊥ + 2J‖ [2]. The spin

1 When the full Hilbert-space is retained, the strong coupling
expansion for the singlet ground state reads:

|S = 0〉 = |
r

r

r

r

. . .〉+
J‖

J⊥

∑
r

. (5)

|
r

r

. . .
r

r

r−1

( r r

r r

+ ,r rl
r r

)r,r+1
√

2
r

r

r+2 . . .〉+O

(
J‖

J⊥

)2

,

E0 = −
3

4
NJ⊥

[
1 +

1

2

(
J‖

J⊥

)2

+

]
(6)

where the same valence bond notation is used for all singlets
whether they lie along the legs or the rungs.
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Fig. 5. Energy spectrum of transverse excitations in a mag-
netic field. (a) H ≥ Hc1, the incommensurate wavevector is
close to the antiferromagnetic point. (b) H ' (Hc1 + Hc2)/2,
the incommensurate wave-vector is close the zone center. On
both plots, the spin-stiffness ρs ∝ sin(π − Qσ) is the slope of
the bottom edge of the spectrum at q = π.

eigenstates of this effective Hamiltonian are a represen-
tation of the triplet-singlet subspace (| ↑〉 ≡

r

r

−1, | ↓〉 ≡ r

r

)
on each rung and have nothing to do with the original
spin-1/2. In this model, the excitations which carry h̄/2
angular momentum (spinons), have a semionic character,
i.e. can only be observed in pairs. In non-zero effective
fields (Heff 6= 0) the longitudinal and transverse excita-
tions must be distinguished. The continuous spectrum of
transverse excitations (1-magnon or 2-spinons) is repre-
sented in Figure 5 at two different magnetic fields. At fields
just above Hc1 (Fig. 5a) a new minimum in the spectrum
develops at Qσa = πσ, where σ = M(Heff )/Msat is the
spin-polarization of the XXZ-model in an effective field
Heff . The lower critical field H ≈ Hc1 correspond to the
saturation field of the XXZ model,Hsat

eff ≈ 3J‖/2: the spin-

polarization σ in Hsat
eff is −1 and the ladder magnetization

m is zero. Just above Hc1, the soft modes at π/a and Qσ
are very close: the spin stiffness ρs ∝ (1 + σ) ∝ m goes to
zero and a large low-energy spectral weight exists close to
the antiferromagnetic point. The situation is quite differ-
ent close to Heff = 0 (i.e. half-way between Hc1 and Hc2),
where the incommensurate wave-vector Qσ, is close to the
zone center (Fig. 5b). For longitudinal fluctuations, the
incommensurate minima in the two cases considered are
essentially interchanged with respect to transverse fluctu-
ations.

It is useful to “translate” the XXZ incommensurate
states just described into the valence bond representation
of ladder states. The pictorial images of the incommensu-
rate ground states shown in Figure 6, close to J⊥ − J‖/4
and J⊥ + J‖/2, are appropriate on short lengthscales
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Fig. 6. The k = π/2 (a) and k = π (c) ground states are
superposition of the singlet-triplet configurations shown. The
wavevector k refers to the wavevector in the XXZ representa-
tion. In ladder representation shown, this wavevector is k/2.
Excitations are built as Bloch wave of the soliton-antisoliton
pairs represented on (b) and (d).

(quantum fluctuations destroy the periodicity Qσ on long
lengthscales). Low energy excitation above the ground
state are Bloch waves of the soliton-antisoliton defects de-
picted in Figure 6: this builds a coherent superposition
α

r

r

+ β
r

r

−1 (transverse fluctuation) at wavevector Qσ.
Since so many exact results are known for the XXZ

model, the mapping discussed here will prove to be ex-
tremely useful in the analysis experimental data. The high
field magnetization of CuHpCl clearly establishes the cor-
respondence with the phase diagram shown in Figure 1.

5 Identification of the different phases
with high-field magnetization measurements

The weak g-factor anisotropy and the monoclinic symme-
try of this crystal, allow a straightforward determination
of the magnetization by torque magnetometry: if the field
is applied along the ẑ axis, which does not coincide with
the principal axes â, b̂, ĉ, the magnetization is not collinear
with H, and a torque τ ∝ M ×H can be measured. The
magnetization curves of a 100 µg monocrystal have been
measured with an ultrasensitive AC torque magnetome-
ter [2,28]. It is straightforward to identify the critical field
Hc1 and Hc2 from the T = 0.42 K magnetization curve
shown in Figure 7. Below Hc1, the magnetization is ther-
mally activated with an effective gap ∆− (this is shown
in Fig. 8). Similarly, above Hc2, the deviation from the
saturated magnetization are activated with an energy gap
gzµB(H − Hc2) (see NMR section). In Appendix A, the
energy spectrum of excitations carrying one unit less an-
gular momentum than the fully polarized state are deter-
mined. In a ladder, there are two spins in the unit cell, and
hence two spin-wave modes. Since the polarized phase is
unstable when the lowest energy of these spin-waves drops
below the energy of the polarized state, the upper critical
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Fig. 7. Magnetization of CuHpCl between 0 and 20 T, at
different temperatures. The symbols are experimental data
points, while the solid lines are the fits to the XXZ model
described in the text, using the procedure outlined in Ap-
pendix B. From the lowest temperature curve, two critical
fields Hc1 and Hc2 are identified. Below Hc1, the system is un-
magnetizable, i.e. forms a singlet ground state separated from
S 6= 0 excitations. Above Hc2, the system is fully polarized.
The “incommensurate phase” is between Hc1 and Hc2.

field can be specified exactly

gzµBHc2 = J⊥ + 2J‖. (12)

The observed behavior of the magnetization in the differ-
ent field regions coincides precisely with the zero temper-
ature phases specified on the y-axis of Figure 1. Quantita-
tively, the exchange parameters J⊥ ≈ 13.5 K, J‖ ≈ 2.45 K
are most accurately determined from the values of Hc1

and Hc2. J⊥ can be identified independently as the mag-
netic field at which the NMR relaxation rate is maximum
in the high temperature limit (see Sect. 7). These num-
bers have also been checked against (a) the low and high
temperature dependence of the susceptibility [2,29], (b)
the gap suppression of the low temperature specific heat
and (c) the overall bandwidth (2J‖) of the triplet branch
(H = 0) [30] measured by neutron scattering. In a nu-
merical study of the ladder magnetization, the presence
of a weak cross-exchange coupling between legs has also
been investigated [24]. The conclusion is that this cou-
pling is weak and if non-zero, ferromagnetic. Considering
all the experimental and numerical uncertainties, it seems
at present unnecessary to keep any additional exchange
coupling in the analysis.

The thermodynamic properties for the XXZ model can
be computed exactly by the Bethe Ansatz [32,33] and
the magnetization curves have been evaluated numerically
using the procedure described in Appendix B. At tem-
perature below J⊥, [35] the results (Fig. 7, solid lines)
agree very well with the experimental magnetization.
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size the role of the short range repulsion between fermions.

Considering that there are no adjustable parame-
ters, the mapping of strongly-coupled spin-ladders
onto the XXZ model appears to be excellent. In
particular, the quantum critical behavior of lad-
ders at Hc1 is acurately reproduced by this model,
a point which is emphasized further in Section 8
by constructing explicitly the scaling plots for the mag-
netization. In the gapped phase, the XXZ mapping pro-
gressively loses its validity at small Zeeman splitting (com-
pared to ∆) [35]. In this limit, it is instructive to compare
the temperature dependent magnetization to the free-fer-
mion model proposed by Troyer et al. [2,34] where

M

Msat
=

2z(β) sinh(βgzµBH)

1 + [2 coshβgzµBH]z(β)
(13)

and z(β) ≈ exp(−βJ⊥)I0(βJ‖) In this model, the statisti-
cal weights are adjusted in order to reproduce the full spin
entropy at high temperature, but the nearest-neighbor re-
pulsion is ignored. Figure 8 shows that, at high temper-
ature, the experimental magnetization is systematically
higher that inferred by the free-fermion model (solid lines).
At finite temperature, interactions between fermions in-
crease the value of the chemical potential (which is neg-
ative in the gapped phase, µ ≥ −|∆−|). Hence at higher
temperature, the effective gap (|µ|) becomes smaller and
a higher fermion density is possible. The role of interac-
tions will be further emphasized with the identification of
the NMR relaxation processes: the dominant relaxation
channel (staggered process) when H → Hc1 would not be
possible without interactions.

5.1 Ordered phase

Down to T = 0.1 K, magnetization curves show no
plateaux nor slope changes which could indicate a 3D

Fig. 9. Suggested ordered dimer-state close to half-filling:
triplet and singlet bonds form a 3D antiferromagnetic lattice.

ordering transition. The 1D models appear to give a pre-
cise account of the magnetization at all temperature. On
the other hand, small but sharp peaks in the specific heat
have been observed above Hc1 at low temperature [30,31].
After integration of the specific heat at constant field, it is
found that the entropy per spin associated to this transi-
tion is very small (< 10−2kB/spin). In light of these exper-
imental facts, a second order phase transition appears at
low-T between Hc1 and Hc2, involving a small change in
spin-entropy and no detectable change in magnetization.

When 3D coupling are ignored, the XXZ mapping
(Sect. 4) gives a representation in terms of an interact-
ing 1D fluid of spinless fermions (Luttinger liquid). Since
there is no magnetization change, the 3D transition takes
place at constant fermion density. A very common 3D in-
stability for a 1D Luttinger liquid is a charge density wave
ordering. In a valence-bond language, this transition can
be viewed as a valence-bond ordering of the 1D

r

r

−1 states
in a 3D-lattice. This would hardly affect the magnetiza-
tion which measures the density of

r

r

−1 bonds (fermion
density) while the quenching of their kinetic energy would
be manifest in the specific heat. For a 3D-charge or-
dering, repulsive interactions between fermions are usu-
ally necessary. Antiferromagnetic superexchange between
ladders, introduce very naturally an additional repulsion
between fermions on different ladders. This antiferromag-
netic super-exchange may be represented by,

Hinter = Jinter
∑
〈k,l〉

Sk · Sl (14)

where the sum 〈k, l〉 is carried over nearest-neighbor spins
belonging to different ladders. The physics of a low-T tran-
sition should be described by the projection of (14) on the
restricted Hilbert space, i.e.

Heff
inter = −

Jinter

4

∑
〈k,l〉

(
t†ktl + tkt

†
l − nknl

)
, (15)

which has, up to a sign, the same form as Heff
2 . A

gauge transformation, switching the phase of hopping
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operators t2r+1 → −t2r+1 every other rungs, restores an
effective antiferromagnetic coupling in the spin model. In
the spinless fermion model, a transition to a charge den-
sity wave state can only be established close to half fill-
ing [H = (Hc1 + Hc2)/2] [36]. It is not known whether
this transition persist at low fermion densities. Since this
model arise in many context, it will be important to deter-
mine its complete phase diagram. Of particular relevance
is the commensurate or incommensurate nature of the 3D
charge density. The physics of this model is in fact relevant
to almost all quasi-1D quantum magnets. For example, in
the spin-Peierls compounds CuGeO3, there is also a tran-
sition to a 3D incomensurate phase, with no change in
total magnetization. At the transition, only the local dis-
tribution of magnetization changes [39]. Eßler and Tsvelik
[40] have shown that the 3D phonon-couplings present in
this family of materials can be represented as a transverse
exchange between chains in an effective magnetic Hamil-
tonian. From the point of view of magnetism, this “charge
density wave” ordering cannot be distinguished from a real
spin-Peierls transition recently proposed by several au-
thors [31]. It is therefore natural to expect ordered phases
with similar structures in all compounds within this uni-
versality class.

From the point of view of magnetism, this is an orig-
inal magnetic state, with a 3D ordered structure of va-
lence bonds. Figure 9 gives a pictorial representation of
this state at half-filling ((H = Hc1 + Hc2)/2). From this
discussion, it is clear that further experimental and theo-
retical studies of the 3D ordering of strongly coupled lad-
der are called for.

6 Assigment of NMR lines and identification
of the dynamical relaxation processes
in the gapped phase

NMR is an ideal tool to probe the low-energy dynamics
of quantum magnets [3]. When nuclei (here protons) are
located at different sites than the electronic spins, the in-
teraction between electronic and nuclear spins are mostly
dipolar: the dipolar field hij(t) produced by the electronic
spin i on the nuclear spin j serves a probe for the dynam-
ical properties. The time-averaged z-component

∑
i〈h

z
ij〉

of this local field shifts the value of the magnetic field felt
by the nucleus by an amount proportional to the local
electronic susceptibility χi

Kj =
∑
i

Aijχi. (16)

Kj depends on the position of the nuclei in the unit-cell
through the dipolar sum

Aij ∝ −γeγnh̄
2 1− 3 cos2 θij

|rij |3
(17)

where θij is the angle between rij and H. Kj will be pos-
itive if hj is mostly parallel to H, and negative if its an-
tiparallel. CuHpCl contains 24 protons spins in the unit
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Fig. 10. Temperature dependence of the NMR spectrum mea-
sured at 16 T. The intensities have been normalized to com-
pensate for the gap suppression. Most T−1

1 measurements have
been carried out on Line I and II, which are always located at
the extremities of the spectrum for all fields and temperatures.
They can be identified with nuclei H14 and H23 (line I) and
nuclei H2 (line II).

cell: in the NMR spectrum at 16 T (i.e. in the polarized
phase) shown in Figure 10, there are indeed 24 resolved
lines. Their position depends on temperature and follow
the T -dependence of the local magnetization. For 16 nu-
clei the hyperfine shift Kj is positive and negative for the
8 remaining. For proton sites which are nearly equivalents,
the lines are close together as the local fields (and their
fluctuations) are nearly identical. Using the proton posi-
tions calculated from X-ray data, it is possible to deter-
mine the dipolar sum on each site and assign it to a cor-
responding line. For example, the outermost line labeled
I arise from nuclei H14 and H23 (AI ≈ 2950 G) while line
II arise from proton H2 (AII ≈ −2400 G).

The hyperfine shift is also a measure of the local elec-
tronic spin susceptibility Mj/H. Its temperature depen-
dence is shown in Figure 11. Below Hc1 there is, at low
temperature, an exponential drop of the hyperfine shift
consistent with an activated behavior with a characteris-
tic energy gap ∆−. The dependence observed at 8.7 T,
just above Hc1, shows an increase of the local magnetiza-
tion as the temperature is raised, a very unusual behavior
for a magnetic phase (e.g. the magnetization of canted
antiferromagnets always decrease with temperature). At
low temperature (kBT < J⊥) it is meaningful to use the
XXZ representation, where the system can be viewed as a
Luttinger liquid of triplets: in this limit, the presence of a
continuum of longitudinal excitation carrying an angular
momentum h̄ (see Sect. 4) contributes to an increase of the
triplet occupation with temperature. At higher fields, the
density of states at small wavevectors gets smaller and a
more classical behavior is recovered. In quantitative term,
the hyperfine shift observed below 6 K ≈ J⊥/2 agrees well
with the XXZ mapping and the thermodynamic measure-
ments of M/H (see Fig. 11).
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Fig. 11. Temperature dependence of the hyperfine shift at
different magnetic fields. The thermodynamic measurement of
M/H at H = 5, 8 and 15 T are plotted on the same graph as
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M/H inferred from the XXZ mapping (Sect. 4) at low tem-
perature are drawn as dotted lines. At 8.7 T, in the gapless
XXZ-phase, there is first an increase of the local magnetization
with temperature, an unusual behavior for a magnetic state.

Temporal fluctuations of the local fields hij(t) at the
nuclear precession frequency (essentially zero energy) pro-
vide the dominant relaxation channel for nuclear spins.
The longitudinal spin-lattice relaxation rate of the nu-
cleus i

1

T1

∣∣∣∣
i

=

∫
exp(−iωnt)dt

∑
j

〈h+
ij(t)h

−
ij(0)〉 (18)

=
(γnγeh̄)2

2

∑
q

[
F i⊥(q)S⊥(q, ωn)

+ F iz(q)Sz(q, ωn)
]

(19)

is sensitive to the transverse and longitudinal structure
factors

S⊥(q, ωn) =

∫
exp(−iωnt)dt〈S

+
q (t)S−−q(0)〉, (20)

Sz(q, ωn) =

∫
exp(−iωnt)dt〈S

z
q (t)Sz−q(0)〉 (21)

through the form factors F iz and F i⊥. These quantities are
simply the Fourier transform of |Aij |2 defined in equa-
tion (17). They are most easily computed in real space
as geometrical dipolar sums: the longitudinal and trans-
verse components of the resultant local field on site i,
hi =

∑
j hij , depend on the actual position of the nucleus

i in the unit cell. Depending on the proton site selected,
the relative magnitude of the form factors F iz and F i⊥ can
change by one order of magnitude: this provides a unique
way to measure separately all components of the structure
factor at ω = ωn.
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Fig. 12. Temperature dependence of the T−1
1 relaxation rate

of sites I and II in the gapped phase (H = 5.6 T). At high
temperature the relaxation at site II is an order of magnitude
faster than at site I, but decreases exponentially at lower tem-
perature with an activation energy ∆II ≈ 6.8 K, twice as large
as for site I, ∆I ≈ 3.4 K.

Figure 12 illustrates how different the relaxation on
different proton sites can be in the gapped phase (H =
5.6 T). If the T−1

1 behavior of both lines I and II are ac-
tivated, the activation energy for line II, ∆II ≈ 6.8 K, is
twice as large as the activation energy for line I, ∆I ≈
3.4 K. In a field of 5.6 T, the smallest activation energy
is ∆− = ∆ − gµBH ≈ 3.0 K between the triplet branch
|1, q〉 and the ground state, close to the measured energy
∆I for line I.

The contribution of one-magnon states |1, q〉 (cf. Eq. 7)
to the structure factor are proportional to δ(ω − E1(q)):
their spectral weight at the nuclear frequency is zero. On
the other hand, these states are by no-means exact eigen-
states and a number of low-energy scattering processes be-
tween magnons can generate a finite spectral weight at low
energy. Among them, there are (i) finite matrix elements of
H2 between triplet states which are ignored in the reduc-
tion to the effective Hamiltonian H2, (ii) density-density
interactions (last term in Eq. (3)), which contribute as
the square of the density of thermally excited magnons,
(iii) other interactions such as interchain couplings and
impurity scattering.

It is instructive to follow the classification of low-
energy processes proposed by Sagi and Affleck [37] in the
context of Haldane S = 1 spin-chains. Only three relevant
channels need to be examined:

(i) The simplest processes are the spin-conserving two-
magnons processes (intrabranch) represented in Fig-
ure 13: the magnons states π − q/2 and π + q/2
within a magnon branch of a given mz are coupled
by the hyperfine interaction which relaxes the nu-
clear spins. At low temperature, only states in the
mz = −1 branch are thermally occupied with a den-
sity ∝ exp(−∆−/kBT ). This occupation factor dom-
inates the temperature dependence of this relaxation
channel. In this limit, this process contributes to the
longitudinal structure factor S(ωn ≈ 0, q ≈ 0) (no
spin-flip).
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ing processes which can drive the NMR relaxation. The in-
trabranch processes leave mz unchanged and contribute only
to Sz. The interbranch process which involve a spin flip, con-
tribute to S⊥ and are quenched one the Zeeman energy (7.6 K
at 5.6 T) exceed the triplet bandwidth (2J‖ ≈ 5 K). In the
staggered process, two magnons from the bottom of the band
−1 are scattered into a magnon state at twice the energy: it is
governed by the square of the magnon density n2

− ∝ exp(2∆−).

(ii) The spin non-conserving processes (interbranch) cou-
ple magnons with energies > ∆ in the mz = 0
and mz = −1 branches. They contribute to the
transverse structure factor (there is a spin-flip),
with an activation energy set by the full gap ∆.
When the Zeeman energy exceeds the one-magnon
bandwidth (2J‖), which is the case at 5.6T, this pro-
cess is completely quenched since there are no states
left in mz = 0 and the mz = −1 branches with the
same energies.

(iii) Since the magnons states used do not constitute a real
representation for the eigenstates of the full Hamil-
tonian, various processes quadratic in the magnon-
density can occur. The lowest order process con-
tributing to the transverse structure factor is a three-
magnon process where two-occupied magnons at the
bottom of the mz = −1 band are scattered into a
magnon with twice the energy via a large momen-
tum transfer. The extra angular momentum being ab-
sorbed by the nuclear spin, this process contributes to
the transverse structure factor S⊥(ωn ≈ 0, q), where
q is large and will be taken as π in the rest of the anal-
ysis. This process is governed by a quadratic thermal
occupation factor ∝ n2 = exp(−2∆−/kBT ) and re-
quires to have a final state in the mz = −1 branch
available at energy 2∆−: this is the case when the
bandwidth 2J‖ exceeds the gap ∆−, i.e. sufficiently
close to Hc1. There are other relevant quadratic pro-
cesses: four magnons scattering (Eq. (3)) processes
at the bottom of the mz = −1 band have the same
temperature dependence but are spin-conserving and
hence enter only in the longitudinal structure factor.

To summarize, the dominant processes in an interme-
diate field range are:
- For the longitudinal structure factor Sz , the intrabranch
two-magnon process, Sz ∝ n− ∝ exp(−∆−/kBT ).

Table 1. The form factors for lines I and II, computed as dipo-
lar sums, are expressed in units of 10−4Å−6. The uncertainties
which are of the order of 20% -30% have a number of origins
and are discussed elswhere [3].

Fz(0) F⊥(π)
Line I 13 6
Line II 4 70

- For the transverse structure factor S⊥, the 3-magnons
staggered process represented in Figure 13, S⊥ ∝ n2

− ∝
exp(−2∆−/kBT ).

In this simple picture, two numbers Sz(q = 0) and
S⊥(q ≈ π) are sufficient to specify the T−1

1 relaxation of
all lines at a given field and temperature

1

T1

∣∣∣∣
i

∝ F iz(0)Sz + F i⊥(π)S⊥. (22)

The value of the form factors F appropriate for line I
and II are given in Table 1. Since F II⊥ � F IIz , line II
is dominated by the transverse structure factor, i.e. is
governed by the staggered processes ∝ exp(2∆−/kBT )
in this field range: this is fully consistent the observed
activation energy. While longitudinal and transverse fluc-
tuations contribute to line I, the linear system (22) can
be solved explicitly and the different component of the
structure factor, plotted in Figure 12, show very clearly
the two different activation energies, corresponding to the
two dominant processes.

At high temperature, when the thermally excited
fermion density is important, the staggered processes
dominate by an order of magnitude. Since the fermion den-
sity is likewise large above the critical field Hc1, staggered
processes dominate the relaxation in the XXZ-phase, a re-
sult which is consistent with all theoretical analysis [7,10,
37] and the data presented in Figure 15.

The relaxation rate T−1 in the polarized phase (above
Hc2) is also activated as shown in Figure 14. The mea-
sured activation energy is close to gµB(H −Hc2) in good
agreement with the exact low energy spectrum described
in Appendix A. Hence, this polarized phase has no Gold-
stone mode and in this sense is not a ferromagnet. There
are two magnons modes above the polarized state (two
spins per unit cell): hence, the structure of the spectrum
above Hc2 and below Hc1 is qualitatively different, indi-
cating that the XXZ model which reproduces correctly the
low-energy behavior in the gapless phase, cannot be taken
literally over the entire phase diagram.

7 Incommensurate phase and quantum
critical regime

Figure 15 gives the overall temperature and field depen-
dence of the NMR relaxation rate (line I) through the
entire phase diagram. In the left panel, the dependence of
the T−1

1 rate through the lower critical field is displayed.
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Fig. 15. (a) Temperature dependence of 1/T1 through the
critical field Hc1. In the lower part, the T−1

1 dependence in
the singlet gapped phase (H < Hc1) is displayed, while its
behavior in the magnetic phase (H > Hc1) is shown in the
upper part. The dashed lines are guides to the eyes. Lines la-
beled (A) and (C) correspond to the crossover lines of Figure 1.
(b) Temperature dependence of 1/T1 through the critical field
Hc2. The upper part shows the behavior in the magnetic phase
below Hc2 while the lower part is in the “fully polarized”
gapped phase (H > Hc2).

In the lower part, the behavior in the gapped phase is re-
produced over a broader temperature range. Two distinct
regimes can immediately be recognized. When the tem-
perature is raised at constant field through the effective
gap ∆−, the exponential suppression of the T−1

1 crosses
over to the temperature independent value of the relax-
ation rate expected in a classical system. Comparing with
Figure 1, this crossover can be recognized as line (A) (de-
fined as kBT = ∆−) separating the gapped phase, con-
trolled by quantum fluctuation, and the quantum critical
phase where ξT is the only relevant lengthscale. When the
field is raised above Hc1, the behavior at high tempera-
ture is qualitatively the same but at low temperature T−1

1
starts to diverge. Again, it is possible to place a crossover
line (C) separating the two regimes. At high temperature,
one recognizes the same quantum critical phase controlled
solely by thermal fluctuation, while at low temperature,
the spectrum of low energy fluctuation in the gapless mag-
netic phase controls the NMR relaxation. When the mag-
netic field is raised and crosses Hc2 (Fig. 15b), the same
features are qualitatively observed, with possibly a weaker
divergence of T−1

1 at low temperature in the gapless phase.
What is the origin of this critical behavior of T−1

1 through-
out the gapless phase?

Because of the broken rotational symmetry, transverse
(S⊥) and longitudinal fluctuations (Sz) involve different
processes (cf. Sect. 6) which do not have the same temper-
ature dependence. Since staggered processes, entering S⊥,
were found to dominate the T−1

1 just below Hc1, it is natu-
ral to first examine the transverse low energy modes in the
gapless phase. In the XXZ mapping for strongly coupled
ladders (Sect. 4), two soft modes (transverse in the valence
bond

r

r

,
r

r

−1 basis) were found (Fig. 5). One mode is always
at Q = π, and generates the staggered process which was
already found to be strongly relevant. The other mode is at
an incommensurate wavevector Qσ = πσ, which is near π
whenH is close to Hc1 (Fig. 5a). In [10], it was argued that
this mode was gapped and did not contribute to transverse
spin-spin correlation, in apparent contradiction with the
spectrum of the XXZ model discussed in Section 4. On the
other hand, this incommensurate soft mode in this model
is a transverse singlet-triplet wave. For physically obscure
reasons, the transverse spin-spin correlator in this state is
indeed found to have zero spectral weight at the incom-
mensurate wavevector. This point is crucial since it intro-
duces a fundamental difference between spin-ladders and
integer spin-chains which otherwise belong to the same
universality class. This has also important consequences
for neutron-scattering studies of spin-ladders. For NMR,
the staggered process (Q = π) becomes the only relevant
soft mode for (transverse) relaxation. If the temperature
exceeds the maximum of the lower edge of the spectrum2

between Qσ = πσ and π (Fig. 5a), many additional modes
contribute to S⊥. Hence the Q = π soft mode is only rele-
vant for temperature below the spin-stiffness constant ρs,

ρs ≡
π

2
J‖

M

Msat
≈
√
J‖gµB(H −Hc1), (23)

2 This quantity is proportional the spin-stiffness of the anti-
ferromagnetic magnons.
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an independent measure of J⊥.

where the approximation is valid close to Hc1. The con-
dition kT ≈ ρs specifies the crossover line between
the “Luttinger liquid” and the quantum critical regime
(Figs. 1 and 15, line C). As the temperature is lowered,
the spectral weight in the Q = π soft mode increases giv-
ing the divergent contribution to

1

T1

∣∣∣∣
⊥

∝

(
ρs

kBT

)η−1

, (24)

where η is the exponent governing the power law decay of
the correlation functions [10]. At Hc1 and Hc2, the expo-
nent η is known to be η = 1/2 [7] and depends smoothly
on the magnetization in between. The precise dependence
of η with H is not known for ladders and could differ from
Haldane systems [38], where the incommensurate mode
at Qσ is relevant. The experimental T−1

1 divergence ob-
served at low temperature appears to be fully consistent
with a square-root singularity (see Fig. 18). While there
could also be additional critical fluctuations associated to
the 3D ordering3 occurring at very low temperature, the
divergence of T−1

1 which is clearly noticeable below 5 K
(≡ 2J‖) has to involve 1D fluctuations.

At temperature above ρs, the relaxation rate gradually
crosses over to a constant. This high temperature limit of
the relaxation rate has a maximum around 10 T, field at
which gµBH ≈ J⊥.

In classical NMR theory [41], the high temperature
limit of the T−1 relaxation rate is proportional to the
second moment of the spectral distribution of excited
states. This quantity is peaked precisely in the middle
of the triplet band (mz = −1). At high temperature
where dimers are decorrelated, it is thereore natural to
find a maximum in the relaxation rate as a function of
field (shown in Fig. 16) at the level crossing between
the

r

r

−1 and
r

r

states. Since this “classical” contribution
is proportional to the zero frequency spectral weight,

3 Considering that the Q = π magnons in the 3D ordered
structure proposed in Section 4 are essentially the same modes
as in the 1D quantum disordered phase, the ordering should
not have a dramatic effect on the divergence of the NMR rate.

its temperature dependence is expected to be weak. It
is anyway unrelated to the hydrodynamic soft mode at
Q = π, which is a manifestation of the quasi long-range
correlation along the ladder.

The longitudinal fluctuations (Sz) have also a contri-
bution to the T−1

1 relaxation rate originating from the
Q = 0 uniform mode. They have been shown to be non-
critical [10]

1

T1

∣∣∣∣
‖

∝
kBT

ρs
· (25)

Since this contribution is noticeable only close to Hc1,
where it is weak (see Fig. 15), it will not be discussed
further.

Since in the experimental data shown in Figure 15, we
are clearly able to identify the scaling parameters x< =
∆−/kBT for H < Hc1 and x> = ρs/kB for H > Hc1 (line
A and C) on each side of the critical field, it is natural to
construct the scaling plots appropriate to this quantum
critical point.

8 Scaling plots in the quantum critical regime

The concept of scaling at a quantum phase transition, one
of the most beautiful idea in condensed matter physics,
was developed in the context of the metal-insulator tran-
sition in disordered systems [42], where it has been bril-
liantly applied to doped semiconductors [43]. But it is in
two-dimensions that the concept has found the most spec-
tacular applications: disordered superconducting films [44,
45] go directly from a superconducting to an insulating
state through a T = 0 quantum phase transition as a func-
tion of disorder. Josephson-junction arrays have a field
tune vortex delocalization transition at a critical fraction
of the flux quantum fc [46]. In a two-dimensional electron
gas, the transitions between quantum Hall plateaux or to a
Hall-insulating state [47] are also governed by zero temper-
ature fixed points [9]. More recently, the scaling properties
of a novel metal-insulator transition [48] in silicon MOS-
FET’s have also been thoroughly investigated. In light of
this, it is surprising to find so few experimental studies
[49] of quantum phase transitions in one dimension. On
the other hand, many 1D systems have Lorentz invari-
ance: this confers unique properties to their quantum crit-
ical points. In particular, their zero temperature critical
behavior can be extended to any temperature via confor-
mal mapping [7]. This enables to give a precise description
of the finite temperature “quantum critical regime” dis-
cussed in the introduction, which is most easily revealed
by a scaling analysis.

In the last section, the scaling parameters x> = ρs/kB
and x< = ∆−/kBT above and below Hc1 have been iden-
tified using NMR. They are also appropriate to scale the
magnetization curves (shown in Fig. 7): the resulting plot
is shown in Figure 17. Considering the overall quality of
the scaling, the variable x< and x> are appropriate to
this quantum critical point. Furthermore, the 0.42 K curve
which crosses into the ordered phase just above Hc1 can
also be included in this plot.
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Fig. 17. Magnetization scaling plot. Below Hc1 all curves
collapse on a single curve when plotted in terms of the
dimensionless scaling variable (∆ − gµBH)/kBT . As ex-
pected, the straight line with slope −1 for x > 1 re-
produces the exponential suppression of the magnetization
with an effective gap ∆− at low temperatures. Above Hc1,
the scaling is also excellent (even in the ordered phase)

using the parameter ρs
kBT

=

√
gµB(H−Hc1)J‖

kBT
.

A similar scaling analysis of the longitudinal relaxation
rate is also possible. Below Hc1, it is straightforward to
scale all the experimental T1−1 curves in terms of the sin-
gle parameter x<, as shown in Figure 18 (lower curve).
On this plot, the crossover line (A) shown in Figures 1
and 15 reduces to the single point x = 1. For x > 1, the
exponentially activated behavior with energy ∆− is the
straight line shown with slope −1. Although all curves
scale nicely for all x, the quantum critical regime is in
principle limited to kBT ≤ 2J‖. Above Hc1, the appropri-
ate scaling function is harder to construct because there
are noncritical (classical) contributions to T−1

1 which need
to be subtracted. For all data shown in Figure 15, these
contributions were determined so that all curves have, af-
ter subtraction, the same asymptotic limit at high tem-
perature. The field dependent constant C(H) substracted
was chosen to coincide with the single high-T value of T−1

1
observed in the gapped phase (H < Hc1, T → ∞) and is
close to the high temperature limit of T1−1 plotted in Fig-
ure 16. In this way the T → ∞ limit coincides with the
x< = x> = 0 point of the two scaling functions (above and
below Hc1). After subtraction, all data for H > Hc1 also
collapse on a unique scaling curve when expressed in terms
of the scaling parameter x>. Data points with x > 1 are in
the Luttinger liquid regime and a square-root divergence
for T−1

1 (line shown) agrees well with the experimental
data. The precise scaling function can in principle be con-
structed for all x from the zero temperature dynamics [6]
and compared to this experimental scaling plot.
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Fig. 18. Scaling plot. Below Hc1 all the T−1
1 measurements

collapse on a single curve when plotted in terms of the dimen-
sionless scaling variable (∆ − gµBH)/kBT . The point x = 1
delimits the quantum critical regime from the quantum disor-
dered phase. For x > 1, the straight line with slope −1 drawn
reproduces precisely the exponential suppression of the T−1

1

rate. Above Hc1, after subtraction of a constant C(H) to the
T−1

1 rate, it is possible to scale the remaining critical contri-
butions to the T−1

1 relaxation in terms of the scaling variable

ρs
kBT

=

√
gµB(H−Hc1)J‖

kBT
. In the Luttinger liquid regime (x > 1),

the data is consistent with a scaling function R(x) =
√
x (solid

line).

9 Conclusions

In this work, several clean experiments on spin-ladders
have been used to illustrate the physics of quantum phase
transitions. Much physical insight could be drawn using
a mapping of strongly coupled ladders on a much stud-
ied model of quantum magnetism, the XXZ model. For a
simple ladder, the anisotropy δ = Jz/Jx = 1/2 puts the
system in the planar (X−Y ) universality class between
the critical fields Hc1 and Hc2. Any frustrating coupling
(antiferromagnetic cross-bonding between legs) increases
δ. When δ > 1, the interactions between fermions (triplets
bonds

r

r

−1) are very large and the system switches over to
an Ising universality class with long range order. When an
Ising gap is present, plateaux appear in the magnetization
curve in the vicinity of Heff = 0 (⇔ H = (Hc1 +Hc2)/2,
half filling), as the magnetic field has to overcome the
Ising gap induced by the interactions. This problem has
also been investigated theoretically by more general means
[50]. An interesting possibility raised in this paper is that
similar physics could be induced by much smaller 3D an-
tiferromagnetic coupling and may already have been ob-
served in specific heat experiments [30,31] on CuHpCl.

In the incommensurate gapless phase, low energy
dynamical properties are dominated by the Q = π
soft mode in the transverse excitation spectrum (cf.
Fig. 5). These fluctuations are not completely quenched
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in the gapped phase, since a three-magnons process, which
can easily be identified by the temperature dependence
of the NMR relaxation rate [3], remains very strong
close to Hc1 (T−1

1 ∝ exp(−2∆−/kBT )). At finite temper-
ature, spin-flip processes introduce a natural cutoff of the
spin-spin correlations. When kBT is larger than a charac-
teristic quantum energy (the effective gap ∆− below Hc1

or the spin-stiffness ρs above Hc1), spin correlation have
the same nature: this is the quantum critical regime [6]. All
dynamical properties have in this limit a universal behav-
ior which should be common to quantum phase transition
in 1D with a continuous symmetry. The scaling properties
of the NMR relaxation data on CuHpCl [4] analyzed in
this work should serve as a reference for future studies of
1D quantum critical points.

In spite of this almost idyllic picture, some questions
remain open. In the gapless phase, the incommensurate
soft mode should have observable consequences, probably
requiring different experimental probes than the ones con-
sidered here. The nature of the low temperature ordered
phase appears to hold the answer to several key issues in
strongly correlated systems. One question to be answered
is: can 1D quantum correlation persist in some form in
3D ordered phases? Finally, other compounds with more
frustrated magnetic structures can potentially open new
horizons in quantum magnetism: for example, there are
new universality classes which have not been considered
so far. There are indeed known models [51] exhibiting an
energy gap between singlet and triplet sectors but no gaps
in the singlet sector. The experimental realization of such
systems represents a unique challenge in this field.

The GHMFL is a “Laboratoire Conventionné aux Universités
J. Fourier et INPG Grenoble I”.

Appendix A: Upper critical field

The energy of the fully polarized state |f〉 = | ↑, ↑, . . .〉 is

EF = 〈F |H|F 〉 = N

(
J⊥

4
+
J‖

2
− gzµBH

)
.

The most general state with one unit of angular momen-
tum less than the completely polarized state is

|ψ〉 =
N∑
j=1

(
ujS

−
2j + vjS

−
2j−1

)
|F 〉, (26)

where the uj and vj are respectively the amplitude on the
lower and upper legs. They are specified by the condition
that ψ〉 should be an eigenstate of H with energy E−, or
equivalently

EF −E− =
N∑
j=1

[
ujS

−
2j + vjS

−
2j−1,H

]
|F 〉. (27)

This condition yields a set of two coupled equations for
the uj and vj , which are easily solved in Fourier space.
The dispersion relations for the corresponding spin-wave
modes εα(k) = EF −Eα−(k) are

εo(k) = gzµBH − J‖(1− cos k), (28)

εa(k) = gzµBH − J⊥ − J‖(1− cos k). (29)

In the strong coupling limit, the “acoustic” mode (29) be-
comes soft first at wavevector k = π, when the field drops
below the field which specifies Hc2 (12). It is straightfor-
ward to generalize the argument to more complex systems.

Appendix B: Thermodynamics of the XXZ
model

This problem has been completely set out by Takahashi
and Suzuki [33]. For an anisotropy factor of Jz/Jx = 1/2,
all thermodynamic quantities can be computed from the
solution of the coupled set of integral equations for the
functions η(x) and κ(x),

ln η(x) = 3
√

3
J‖

kBT
+ s(x) ∗ ln(1 + u(x))

u(x) = 2κ(x) cosh
3gµBHeff

2kBT
+ κ2(x) (30)

lnκ(x) = s(x) ∗ ln(1 + η(x)) (31)

where s(x) = 1
4sechπx2 and ∗ is the convolution product of

two functions. For each value of the temperature and of
the effective field, the thermodynamics is specified by the
value κ(0), i.e. the free-energy per spin is

F

N
= −

J‖

4
− kBT lnκ(0). (32)

We solved equation (31) iteratively from the known solu-
tions, η(x) = 3 and κ(x) = 2 for J‖ = 0 and Heff = 0. We
checked our results against the power series expansion in
J/T [33]

F

N
= −kBT ln

(
2 cosh

gµH

2kBT

)
−
J

8

1

cosh2
(
gµH
2kBT

)
−

3J2

32kBT

 1

cosh2
(
gµH
2kBT

) − 1/4

cosh4
(
gµH
2kBT

)
 .

The comparison with the experimental results shown in
Figure 7 is really excellent.
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